Nonlinear Metric Learning for Alzheimer's Disease Diagnosis with Integration of Longitudinal Neuroimaging Features
نویسندگان
چکیده
Identifying neuroimaging biomarkers of Alzheimer’s disease (AD) is of great importance for diagnosis and prognosis of the disease. In this study, we develop a novel nonlinear metric learning method to improve biomarker identification for Alzheimer’s disease and its early stage Mild Cognitive Impairment (MCI). Formulated under a constrained optimization framework, the proposed method learns a smooth nonlinear feature space transformation that pulls the samples of the same class closer to each other while pushing different classes further away. The thin-plate spline (TPS) is chosen as the geometric model due to its remarkable versatility and representation power in accounting for sophisticated deformations. In addition, a multi-resolution patch-based feature selection strategy is proposed to extract both cross-sectional and longitudinal features from MR brain images. Using the ADNI dataset, we evaluate the effectiveness of the proposed metric learning and feature extraction strategies and demonstrate the improvements over the state-of-the-art solutions within the same category.
منابع مشابه
Detection of Alzheimer\\\\\\\'s Disease using Multitracer Positron Emission Tomography Imaging
Alzheimer's disease is characterized by impaired glucose metabolism and demonstration of amyloid plaques. Individual positron emission tomography tracers may reveal specific signs of pathology that is not readily apparent on inspection of another one. Combination of multitracer positron emission tomography imaging yields promising results. In this paper, 57 Alzheimer's disease neuroimaging ini...
متن کاملLongitudinal Analysis for Disease Progression via Simultaneous Multi-Relational Temporal-Fused Learning
It is highly desirable to predict the progression of Alzheimer's disease (AD) of patients [e.g., to predict conversion of mild cognitive impairment (MCI) to AD], especially longitudinal prediction of AD is important for its early diagnosis. Currently, most existing methods predict different clinical scores using different models, or separately predict multiple scores at different future time po...
متن کاملMaximum Mean Discrepancy Based Multiple Kernel Learning for Incomplete Multimodality Neuroimaging Data
It is challenging to use incomplete multimodality data for Alzheimer's Disease (AD) diagnosis. The current methods to address this challenge, such as low-rank matrix completion (i.e., imputing the missing values and unknown labels simultaneously) and multi-task learning (i.e., defining one regression task for each combination of modalities and then learning them jointly), are unable to model th...
متن کاملA hybrid manifold learning algorithm for the diagnosis and prognostication of Alzheimer's disease
The diagnosis of Alzheimer's disease (AD) requires a variety of medical tests, which leads to huge amounts of multivariate heterogeneous data. Such data are difficult to compare, visualize, and analyze due to the heterogeneous nature of medical tests. We present a hybrid manifold learning framework, which embeds the feature vectors in a subspace preserving the underlying pairwise similarity str...
متن کاملDetection of Alzheimer’s Disease in Elder People Using Gait Analysis and Kinect Camera
Introduction: Gait analysis through using modern technology for detection of Alzheimer's disease has found special attention by researchers over the last decade. In this study, skeletal data recorded with a Kinect camera, were used to analyze gait for the purpose of detecting Alzheimer's disease in elders. Method: In this applied-developmental experimental study, using a Kinect camera, data wer...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015